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Abstract

The scattering of water waves by a flexible porous membrane barrier in a two-layer fluid having a free surface is

analysed in two dimensions. The membrane barrier is extended over the entire water depth in a two-layer fluid, each

fluid being of finite depth. In the present analysis, linear wave theory and small amplitude membrane response are

assumed. The porous membrane barrier is tensioned and pinned at both the free surface and the seabed. The associated

mixed boundary value problem is reduced to a linear system of equations by utilizing a general orthogonality relation

along with least-squares approximation method. Because of the flow discontinuity at the interface, the eigenfunctions

involved have a discontinuity at the interface and the orthogonality relation used is a generalization of the classical one

corresponding to a single-layer fluid. The reflection and transmission coefficients for the surface and internal modes, the

free surface and interface elevations and the nondimensional membrane deflection are computed for various physical

parameters like the nondimensional tension parameter, porous-effect parameter, fluid density ratio, ratio of water

depths of the two fluids to analyse the efficiency of a porous membrane as a wave barrier in the two-layer fluid.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the recent past, flexible breakwaters with high wave dissipating ability have been considered as better than fixed

rigid breakwaters for providing protection from wave attack in semi-protected regions or in areas where protection is

required only on a temporary basis. For temporary wave barriers, the amplitude of the wave force is one of the primary

concerns, as these structures do not have proper foundations or strong supports. Therefore, a characteristic of flexibility

is usually included in these temporary barriers in order to minimize the wave forces on them. Leach et al. (1985)

investigated the wave diffraction by a floating rigid breakwater and showed better efficiency of such breakwaters

compared to fixed rigid breakwaters. Sollitt et al. (1986) examined a system composed of two buoyant flaps clamped at

the sea bottom and coupled with weighted mooring lines. Lee and Chen (1990) and Williams et al. (1991) considered the

case of a flexible breakwater consisting of a beam anchored to the seabed and tensioned by a buoy at the surface.

Explicit solutions using Euler beam theory were obtained by Lee and Chen (1990), whilst Williams et al. (1991) used the

boundary integral equation method to analyse the same problem. Results indicate that a relatively stiff structure was
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

d thickness of the porous medium

f resistance force coefficient

G porous-effect parameter

g acceleration due to gravity

H total depth of entire fluid domain

h depth of upper fluid

II ; III amplitude of incident wave in SM and IM

K ¼ o2=g

k0 incident wavenumber

KrI ;KrII reflection coefficient in surface mode (SM)

and internal mode (IM)

KtI ;KtII transmission coefficient in SM and IM

ms membrane mass

m0 nondimensional membrane mass

p wavenumber related to the frequency in the

dispersion relation

Ps differential pressure across the barrier

pn roots of dispersion relation

RI ;RII amplitude of reflected wave in SM and IM

s two-layer fluid density ratio

s� inertial force coefficient

T tension applied to the membrane

TI ;TII amplitude of transmitted wave in SM and

IM

T 0 nondimensional tension parameter

x; y horizontal and vertical Cartesian coordi-

nates

b barrier frequency parameter

g porosity

z barrier deflection (function of y and t)

Zfs; Zint free surface and interface elevation

lI wavelength of incident wave in SM

x barrier deflection (function of y)

r1;r2 density of upper and lower fluid

rs membrane mass density

F velocity potential (function of both space

and time)

f spatial velocity potential

o wave frequency
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needed to obtain a high wave reflection coefficient. Williams et al. (1991) analysed the wave diffraction due to a

flexible breakwater consisting of a compliant, beam-like structure that was anchored to the sea bottom and kept

under tension by a small buoyancy chamber at the top. Williams (1993) analysed the wave diffraction due to a pair of

flexible breakwaters consisting of compliant, beam-like structures, also anchored to the sea bottom and kept

under tension by a small buoyancy chamber at the top. Kim and Kee (1996) considered the case of a single flexible

and inextensible membrane extending the entire water depth. Analytic and numerical solutions were developed.

It was observed that membrane stiffness plays a significant role in barrier performance. Recently, flexible barriers

consisting of vertical tensioned membranes spanning the entire water depth were reported. These include single

membrane (Kim and Kee, 1996; Kee and Kim, 1997) and dual membrane arrangements (Cho et al., 1998; Lo, 1998). It

was found that the wave transmission could be controlled primarily by the membrane tension in the case of a single

structure, and in the case of a dual membrane arrangement, it was by the membrane spacing. Lo (2000) investigated the

interaction of water waves with a vertical flexible membrane of a finite extent which is less than the water depth. The

cases considered include that of a membrane descending from the water surface or ascending from the seabed, and that

of an immersed membrane with gaps at both the top and the bottom. Lee and Lo (2002) studied the performance of

surface-penetrating flexible membrane wave barriers of finite draft. They considered both single and dual membrane

systems in their study.

Porous barriers are currently being suggested for wave dissipation, as reviewed by Chwang and Chan (1998). These

kinds of porous barriers dissipate most of the incoming wave energy and reduce the wave forces on the barriers. Wang

and Ren (1993) presented a theoretical study on the scattering of small amplitude waves by a flexible, porous and thin

beam-like breakwater held fixed in the seabed. Using a least-squares method, Lee and Chwang (2000) studied the

scattering and generation of water waves by vertical permeable barriers.

In all the aforementioned studies, free surface waves are considered for a fluid of constant density over the entire fluid

domain. However, waves can also exist at the interface between two immiscible liquids of different densities. Such a

sharp density gradient can, for example, be generated in the ocean by solar heating of the upper layer, or in an estuary

or a fjord into which fresh (less saline) river water flows over oceanic water, which is more saline and consequently

heavier. The situation can be idealized as a two-layer fluid by considering a lighter fluid of density r1 lying over a

heavier fluid of density r2. The propagation of waves in a two-layer fluid with both a free surface and an interface (in

the absence of any obstacles) was first investigated by Stokes (1847) and the classical problem of this type of two-layer

fluid separated by a common interface with the upper fluid having a free surface is given in Lamb (1932, Art. 231) and

Wehausen and Laitone (1960). In the case of a two-layer fluid having an interface and a free surface, two different

propagating modes may be excited during the wave motion. The waves generated because of the presence of the free

surface are referred to as surface modes (SM), whilst the waves generated because of the presence of the interface are
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referred to as internal modes (IM) [see Milne-Thomson, 1996; Kundu and Cohen, 2002]. Linton and McIver (1995)

developed a general theory for two-dimensional wave scattering by horizontal cylinders in an infinitely deep two-layer

fluid, and calculated the amount of energy that was converted from one wavenumber to the other for the case of circular

cylinders in either the upper or lower fluid layer. The motivation for their work came from a plan to build an

underwater pipe bridge across one of the Norwegian fjords, bodies of water which typically consist of a layer of fresh

water about 10m thick on top of a very deep body of salt water. Work on three-dimensional scattering can be found in

Yeung and Nguyen (1999) and Cadby and Linton (2000). In the former study, an integral equation technique was

employed to solve radiation and diffraction problems for a rectangular barge in finite depth, whereas in the latter study,

multi-pole expansions were used to solve problems involving submerged spheres in water of infinite depth. The

symmetry relations for the added-mass and damping matrices and an analogue to the Haskind relations were given in

Yeung and Nguyen (1999); a more complete derivation of reciprocity relations for three-dimensional scattering in two-

layer fluids can be found in Cadby and Linton (2000). Other notable work on wave–structure interaction in two-layer

fluids includes Zilman and Miloh (1995), Zilman et al. (1996) in which the effect of a shallow layer of fluid mud on the

hydrodynamics of floating bodies was analysed. In Barthélemy et al. (2000), the scattering of surface waves by a step

bottom in a two-layer fluid was considered. This problem is of particular interest to understand how tides are scattered

at the continental shelf break. However, very little progress has been made on wave interaction with porous structures.

Sherief et al. (2003) analysed the effect of gravity waves generated by a porous wave maker in a two-layer fluid with the

upper fluid having a free surface. Recently, Manam and Sahoo (2005) tackled analytically the same problem of waves

past rigid porous structures in two-layer fluid by making use of the generalized orthogonal relation. Also they obtained

complete analytical solutions for the boundary value problems corresponding to the generation or scattering of

axisymmetric waves by two impermeable and permeable coaxial cylinders.

In the present work, the performance of a flexible porous barrier in a two-layer fluid domain is investigated based on

the linearized theory of water waves, with the upper fluid having a free surface. In the study, both layers of fluid are

considered to be of finite depth and the flexible barrier is modelled as a thin and inextensible sheet of membrane

subjected to uniform tension and homogeneous porosity. The membrane is assumed to be fixed end at both the free

surface and the seabed. The reflection and energy dissipation characteristics of the system subjected to normal incident

waves (one corresponding to a SM at the free surface and the other to an IM at the interface) are investigated. The

boundary condition on the porous barrier has been developed by Yu and Chwang (1994), which is a generalization of

the one developed by Chwang (1983) and the porous-effect parameter is a complex number, which includes both the

inertia and resistance effects. The boundary value problem is solved by utilizing an orthogonality relation suitable for

the two-layer fluid domain along with the least-squares approximation method. The behaviour of the energy

transmission in both SM and IM, the variation of the nondimensional membrane modal amplitude and the pattern of

free surface and interface elevation are investigated for various parameters of interest like nondimensional frequency

parameter, water depth, fluid density ratio of the two-layer fluid, porous-effect parameter and tension applied to the

membrane barrier.
2. Mathematical formulation

In the present work, the problem is analysed in a two-dimensional Cartesian coordinate system. The two fluids are

assumed to be inviscid and incompressible and the wave motion is considered in the linearized theory of water waves

neglecting the effect of surface tension. The fluids are separated by a common interface (undisturbed surface located at

y ¼ h), whereas the upper fluid has a free surface (undisturbed surface located at y ¼ 0), and each fluid is of infinite

horizontal extent (�1oxoþ1); both the upper and lower fluids are of finite depth, 0oyoh and hoyoH,

respectively. Region 1 is defined as �1oxo0, 0oyoH and region 2 is defined as 0oxoþ1, 0oyoH (see Fig. 1).

The porous membrane is located at x ¼ 0, 0oyoH. The flow is assumed to be irrotational and simple harmonic in time

with angular frequency o. Therefore, the velocity potential F exists such that Fjðx; y; tÞ ¼ Re½fjðx; yÞ expð�iotÞ�, where

the spatial velocity potentials fj ðj ¼ 1; 2Þ satisfy the Laplace equation

r2fj ¼ 0 in the fluid region j, (1)

where subscript 1 refers to the fluid region 1 (�1oxo0, 0oyoH) and 2 refers to the fluid region 2 (0oxoþ1,

0oyoH). The linearized free surface boundary condition is

qfj

qy
þ Kfj ¼ 0 ðj ¼ 1; 2Þ on y ¼ 0, (2)
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Fig. 1. Definition sketch.
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where K ¼ o2=g, and g is the gravitational constant. The boundary condition at the interface requires that

qfj

qy
is continuous across y ¼ h and (3)

qfj

qy
þ Kfj

� �
y¼hþ
¼ s

qfj

qy
þ Kfj

� �
y¼h�

ðj ¼ 1; 2Þ for 0ohoH ;�1oxo1, (4)

where s is the ratio of the densities of the upper fluid and the lower fluid, i.e. s ¼ r1=r2 and has range 0oso1:0. The
condition on the rigid bottom is given by

qfj

qy
¼ 0 ðj ¼ 1; 2Þ on y ¼ H. (5)

The radiation conditions are given by

f1 !
XII

n¼I

ðIne
ipnx þ Rne

�ipnxÞf nðpn; yÞ as x!�1, (6)

and

f2 !
XII

n¼I

Tne
ipnxf nðpn; yÞ as x!1, (7)

where II and III represent the incident wave amplitudes in SM (fast mode) and IM (slow mode), respectively, and are

assumed to be very small in comparison with the undisturbed fluid depths h and H � h, respectively. RI ;TI and RII ;TII

are the unknown reflected and transmitted wave amplitudes in SM and IM, respectively. It may be noted that pI and pII

are wavenumbers for the incident waves in SM and IM, respectively. Similar definitions for the velocity potentials in a

scattering problem for a two-layer fluid are given by Barthélemy et al. (2000).

The barrier is deflected horizontally with a displacement zðy; tÞ ¼ Re½xðyÞ expð�iotÞ� and xðyÞ denotes the complex

deflection amplitude, which is assumed to be small compared to the water depth. The boundary condition on the porous

barrier surface is given by

qfj

qx
¼ ik0Gðf2 � f1Þ � iox ðj ¼ 1; 2Þ on x ¼ 0; 0oyoH, (8)

where G ¼ Gr þ iGi is the porous-effect parameter as defined by Yu and Chwang (1994) such that

G ¼
gðf þ is�Þ

k0dðf 2
þ s�2Þ

(9)

in which g is the porosity, f the resistance force coefficient, s� the inertial force coefficient, d the thickness of the porous

medium and k0 the wavenumber of the incident wave ( ¼ either pI or pII depending on the mode of incident wave). In

the present analysis two incident wave modes are considered at a time, hence without loss of generality, in all the present
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calculations k0 is taken as pI . The real part Gr represents the resistance effect of the porous material against the seepage

flow, while the imaginary part Gi denotes the inertia effect of the fluid inside the porous material.

It is assumed that the membrane is a thin, homogeneous and inextensible sheet with uniform mass ms (ms ¼ rsd ; d is

the thickness of the membrane, rs is the uniform membrane mass density) under constant tension T. With these

assumptions, the equation relating the displacement x from equilibrium to that of differential pressure Ps acting on the

membrane at x ¼ 0 can be obtained and is given as

d2x
dy2
þ b2x ¼

ior1
T
ðf2 � f1Þ for 0oyoh;

ior2
T
ðf2 � f1Þ for hoyoH ;

8>><
>>: (10)

where b ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffi
ms=T

p
is the barrier frequency parameter. The membrane is pinned at the free surface and the bottom, so

the corresponding boundary conditions are

xð0Þ ¼ 0; xðHÞ ¼ 0. (11)

The continuity of deflection and slope of the membrane barrier across the interface yield

xðh�Þ ¼ xðhþÞ; x0ðh�Þ ¼ x0ðhþÞ. (12)

3. Method of solution

The spatial velocity potentials fj for j ¼ 1; 2 satisfying Eq. (1) along with conditions (2)–(7) are expressed as

f1 ¼
XII

n¼I

Ine
ipnx þ

X1
n¼I ;II ;1

Rne
�ipnx

 !
f nðpn; yÞ for xo0, (13)

and

f2 ¼
X1

n¼I ;II ;1

Tne
ipnxf nðpn; yÞ for x40, (14)

where the eigenfunctions f nðpn; yÞ are given by

f nðpn; yÞ ¼

sinh pnðH � hÞ ½pn cosh pny� K sinh pny�

K cosh pnh� pn sinh pnh
for 0oyoh

cosh pnðH � yÞ for hoyoH

8><
>: ðn ¼ I ; II ; 1; 2; . . .Þ. (15)

Rn and Tn for n ¼ I ; II ; 1; 2; 3; . . . are unknown constants to be determined. The wavenumbers pn (n ¼ I ; II for positive

real roots and n ¼ 1; 2; 3; . . . for positive purely imaginary roots) are the roots of the dispersion relation in p as given by

ð1� sÞp2 tanh pðH � hÞ tanh ph� pK ½tanh phþ tanh pðH � hÞ� þ K2½s tanh pðH � hÞ tanh phþ 1� ¼ 0. (16)

The eigenfunctions f nðpn; yÞ for n ¼ I ; II ; 1; 2; 3; . . . are integrable in 0oyoH having a single discontinuity at y ¼ h and

are orthogonal with respect to the inner product as defined by

hf;ci ¼ s

Z h

0

fðyÞcðyÞdyþ

Z H

h

fðyÞcðyÞdy. (17)

This may be easily seen from the fact that f nðpn; yÞ for n ¼ I ; II ; 1; 2; 3; . . . are the eigenfunctions associated with the self-

adjoint operator

LY �
d2Y
dy2
¼ l2Y; y 2 ð0; hÞ [ ðh;HÞ,

corresponding to the eigenvalues l ¼ pn for n ¼ I ; II ; 1; 2; 3; :::, and satisfying the fluid boundary conditions as given by

Y0ð0Þ þ KYð0Þ ¼ 0; Y0ðHÞ ¼ 0.
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The conditions at the point of discontinuity y ¼ h are given by

Y0ðh� 0Þ ¼ Y0ðhþ 0Þ; s½Y0ðh� 0Þ þ KYðh� 0Þ� ¼ ½Y0ðhþ 0Þ þ KYðhþ 0Þ�,

where the prime denotes the first derivative with respect to y. Further, it may be noted that the orthogonality relation

(17) reduces to the usual one in the single-layer fluid when s ¼ 1.

Applying the continuity of fx (Eq. (8)) along the porous barrier on x ¼ 0 and invoking the orthogonality relation

(Eq. (17)) over ð0oyohÞ [ ðhoyoHÞ, we obtain

In � Rn ¼ Tn for n ¼ I ; II and Rn ¼ �Tn for n ¼ 1; 2; 3; . . . . (18)

A general solution for the membrane governing equation (Eq. (10)) is of the form

xðyÞ ¼ C0eiby þ C00e�iby �
2ior

T

X1
n¼I ;II ;1

Rn

p2n þ b2
f nðpn; yÞ for 0oyoH, (19)

where the arbitrary constants C0, C00 and the fluid density r are defined as

C0 ¼
C1 for 0oyoh;

C3 for hoyoH;

(
C00 ¼

C2 for 0oyoh;

C4 for hoyoH ;

(
r ¼

r1 for 0oyoh;

r2 for hoyoH :

(

Substituting this general solution for x (Eq. (19)) in Eq. (8) and using the relations in Eqs. (13), (14) and (18) the

following expression is derived:

h0ðyÞ þ
X1

n¼I ;II ;1

RnhnðyÞ ¼ 0; 0oyoH, (20)

where

h0ðyÞ ¼
ipI II f I ðpI ; yÞ þ ipII I II f II ðpII ; yÞ þ ioC1e

iby þ ioC2e
�iby for 0oyoh;

ipI II f I ðpI ; yÞ þ ipII I II f II ðpII ; yÞ þ ioC3e
iby þ ioC4e

�iby for hoyoH

(

and

hnðyÞ ¼

2o2r1
ðp2n þ b2ÞT

� ipn � 2ipI G

" #
f nðpn; yÞ for 0oyoh

2o2r2
ðp2n þ b2ÞT

� ipn � 2ipI G

" #
f nðpn; yÞ for hoyoH

8>>>>><
>>>>>:

ðn ¼ I ; II ; 1; 2; . . .Þ.

Let

QðyÞ ¼ h0ðyÞ þ
XN

n¼I ;II ;1

RnhnðyÞ for 0oyoH. (21)

Applying the least-squares method,Z H

0

Q̄ðyÞ
qQðyÞ

qRn

dy ¼ 0 for n ¼ I ; II ; 1; 2; . . . ;N, (22)

where the bar denotes the complex conjugate. This provides N þ 2 linear equations with N þ 6 unknowns, as h0ðyÞ

involves four extra unknowns C1;C2;C3 and C4. These N þ 2 linear equations in the integral form areZ H

0

h0ðyÞ þ
XN

n¼I ;II ;1

RnhnðyÞ

" #
h̄iðyÞdy ¼ 0 for i ¼ I ; II ; 1; 2; . . . ;N. (23)

The end conditions on the barrier as in Eq. (11) and the continuity conditions at the interface as in Eq. (12) yield

another four linear equations as given by

C1 þ C2 �
2ior1

T

XN

n¼I ;II ;1

Rn

p2n þ b2
f nðpn; 0Þ ¼ 0, (24)
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C3e
ibH þ C4e

�ibH �
2ior2

T

XN

n¼I ;II ;1

Rn

p2n þ b2
f nðpn;HÞ ¼ 0, (25)

C1e
ibh þ C2e

�ibh �
2ior1

T

XN

n¼I ;II ;1

Rn

p2n þ b2
f nðpn; h

�
Þ ¼ C3e

ibh þ C4e
�ibh �

2ior2
T

XN

n¼I ;II ;1

Rn

p2n þ b2
f nðpn; h

þ
Þ (26)

and

ibC1e
ibh � ibC2e

�ibh �
2ior1

T

XN

n¼I ;II ;1

Rn

p2n þ b2
f 0nðpn; h

�
Þ ¼ ibC3e

ibh � ibC4e
�ibh �

2ior2
T

XN

n¼I ;II ;1

Rn

p2n þ b2
f 0nðpn; h

þ
Þ,

(27)

with the prime denoting the derivative with respect to y. The system of Eqs. (23)–(27) is solved to compute and analyse

various physical quantities of interest.

4. Numerical results and discussion

In the present section, numerical results on the combined effect of porosity and membrane tension are discussed, to

analyse the performance of the membrane barrier in the two-layer fluid for various nondimensional parameters. For

convenience, the wave and membrane parameters are given in terms of nondimensional values of wavenumber pI H,

water depth h=H, fluid density ratio s, porous-effect parameter G, membrane tension T 0 ¼ T=ðrgh2Þ, and membrane

mass m0 ¼ m=rh. The membrane mass m0 is kept fixed (m0 ¼ 0:1) throughout the analysis as the effect of membrane

mass on the performance characteristic of the barrier is insignificant (Kim and Kee, 1996; Lo, 1998). The reflection and
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Fig. 2. Reflection and transmission coefficients in (a) SM and (b) IM versus pI H for different T 0 values at G ¼ 1þ 2i, s ¼ 0:75 and

h=H ¼ 0:5.
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transmission coefficients are defined by

KrI ¼
RI

II

����
���� and KtI ¼

TI

II

����
���� in SM,

KrII ¼
RII

III

����
���� and KtII ¼

TII

III

����
���� in IM. ð28Þ

The wave transmission across a permeable membrane barrier is governed by two combined phenomena. When a

train of waves approaches a permeable flexible barrier, seepage flow induced by waves penetrates through the

barrier and waves are reproduced with some dissipation after transmission. On the other hand, due to deformation

of the membrane barrier, the waves are regenerated in the downstream side, even if there is no flow across the

barrier.
4.1. Energy reflection and transmission

In general, the energy reflection and transmission provide one of the major criteria in deciding the effectiveness of the

barrier. In this subsection, the effects of various nondimensional physical parameters on energy reflection and

transmission in both SM and IM are analysed. For the sake of simplicity, all results in the present subsection are

analysed with respect to the normalized SM wavenumber pI H by allowing the normalized IM wavenumber pII H to

vary based on the two-layer fluid dispersion relation (Eq. (16)). It is observed from the general trend of wave reflection

in SM that the wave reflection decreases from its peak to a certain value in the shallow water region and thereafter it

attains a constant value. On the other hand, the wave reflection in IM increases from zero to a certain value in the

shallow water region and thereafter it attains a constant value (see Figs. 2–5). Similar results are obtained for wave

reflection by a flexible membrane barrier in a single-layer fluid by Lo (2000) and Lee and Lo (2002) [see Fig. 3(a) of Lo
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0

0.2

0.4

1

0 1 2 3 4 5 6

G =1 
G =2 
G = 1+2i

0

0.2

0.4

0.6

0.8

1

pI H

KrII

KtII

pI H

0.8
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Fig. 3. Reflection and transmission coefficients in (a) SM and (b) IM versus pI H for different G values at h=H ¼ 0:5, s ¼ 0:75 and

T 0 ¼ 0:4.
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(2000) and Fig. 5 of Lee and Lo (2002)]. Furthermore, the wave reflection in SM is found to be significantly smaller than

the wave reflection in IM, which suggests that a membrane barrier is more effective in IM wave motion than in SM

wave motion. Similar observations are reported by Manam and Sahoo (2005).

In Fig. 2(a,b), the reflection and transmission coefficients in SM and IM, respectively, are plotted against pI H, for

different values of membrane tension parameter T 0. It is observed that higher wave transmission and lower wave

reflection occur in SM whereas lower wave transmission and higher wave reflection occur in IM over the range of

practical interest.

The variation of reflection and transmission coefficients versus pI H for both SM and IM are plotted in Fig. 3(a,b),

respectively, for different values of the porous-effect parameter G. In general, the wave reflection in both SM and IM

increases with a decrease in the value of jGj and a reverse trend is observed in the case of wave transmission. This is

expected, because an increase in porosity not only allows more waves to pass through the barrier but also reduces the

membrane barrier resistance to the wave motion.

The effects of nondimensional water depth h=H of two fluids on the reflection and transmission coefficients

in SM and IM are shown in Fig. 4(a,b), respectively. In SM wave motion it is observed that the wave transmission is

lower and the wave reflection is higher for a thinner upper layer, i.e. for h=H ¼ 0:25 (Fig. 4(a)). However, except

for very small values of pI H the wave reflection and transmission are same for h=H ¼ 0:5 and 0:75. On the

other hand, an opposite trend is observed in the case of IM wave motion where the wave transmission is higher

and the wave reflection is lower for a thinner upper layer, i.e. h=H ¼ 0:25 (Fig. 4(b)), almost over the entire range of

interest. This is because of the resonating interaction of surface and internal waves when the free surface is close to

the interface.

The reflection and transmission coefficients versus pI H are plotted in SM and IM for different fluid density ratios s in

Fig. 5(a,b), respectively. In Fig. 5(a) it is observed that the fluid density ratio s has negligible effect on both wave

reflection and transmission for SM wave motion. However, the wave reflection in SM is observed to be marginally
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Fig. 4. Reflection and transmission coefficients in (a) SM and (b) IM versus pI H for different h=H ratios at G ¼ 1þ 2i, s ¼ 0:75 and

T 0 ¼ 0:4.
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higher for a large value of s (s ¼ 0:75). On the other hand, the wave reflection increases and the wave transmission

decreases for IM wave motion with an increase in fluid density ratio (Fig. 5(b)). This nature of the wave transmission in

IM may be due to the high interface elevation as the fluid density ratio s approaches unity (Kundu and Cohen, 2002;

Milne-Thomson, 1996).
4.2. Free surface and interface elevations

In this subsection, the nature of free surface elevation Zfs and interface elevation Zint versus nondimensional distance

x=lI are plotted after normalizing with respect to the amplitude of the incident waves in the SM. This normalization

gives a clear understanding about the amplitude of the free surface elevation to that of interfacial wave elevation. The

free surface and interface elevations near the barrier are the result of mutual interaction of propagating and evanescent

modes of both surface and internal waves (see Figs. 6–8). Hence the free surface and interface elevations in a two-layer

fluid are combinations of two prominent wave patterns which are referred to as primary and secondary wave patterns in

the present paper. The primary pattern is the one which is generated due to SM wave motion and the secondary wave

pattern is that developed due to the IM wave motion. In general, it is observed that the interface elevation is much

larger than that of the free surface elevation when either the densities of the two fluids are very close or in the case when

the interface and free surface are close to each other. A similar situation exists in a real ocean, as explained theoretically

in Milne-Thomson (1996, p. 445). One of the reasons for such a high wave amplitude may be due to the resonating

interaction between the waves in SM and IM.

Fig. 6(a,b) shows the pattern of the free surface and interface elevations, respectively, for different values of

membrane tension parameter T 0. The effect of change in tension T 0 is significant only near the locations of local maxima

and minima of the secondary wave pattern in the case of free surface elevation, Fig. 6(a). On the other hand, the

interface elevation is found to be independent of the variation in membrane tension (see Fig. 6(b)).



ARTICLE IN PRESS

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

T′ = 0.1 T′ = 0.2 T′ = 0.4

-0.08

-0.06

-0.04

-0.02

0

 0.02

 0.04

 0.06

 0.08

x/λI

η f
s/

 I I
η i

nt
/I

I

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

T′  = 0.4

-2

-1.5

-1

-0.5

0

 0.5

1

 1.5

2

x/λI

T′  = 0.1 T′ = 0.2

(a)

(b)

Fig. 6. (a) Free surface and (b) interface elevation versus x=lI for different T 0 values at pI H ¼ 1:0, h=H ¼ 0:5, G ¼ 1þ 2i and

s ¼ 0:75.

P. Suresh Kumar et al. / Journal of Fluids and Structures 23 (2007) 633–647 643
Variations of free surface and interface elevations at different h=H ratios are shown in Fig. 7(a,b), respectively. It is

observed that as the interface and free surface come nearer, the amplitudes of both free surface and interface elevations

become higher. This may be due to the resonating interaction between the waves in SM and IM. The magnitude of the

primary and secondary wave pattern amplitudes of the free surface elevation are of same order for small h=H ratio (Fig.

7(a)). This is due to the fact that the interface elevation increases rapidly when free surface and interface are close to

each other (see Fig. 7 (b)).

Fig. 8(a,b) shows the pattern of the free surface and interface elevations for different fluid density ratios s. It is

observed that the amplitude of the free surface elevation increases with decrease in the fluid density ratio s (Fig. 8(a)).

On the other hand, an opposite trend is observed in case of interface elevation where it increases with an increase in fluid

density ratio. As the fluid density ratio s approaches one, the secondary wave pattern of the free surface and the

interface elevations amplify rapidly, which is a well-known phenomenon in the case of interfacial waves [see Kundu and

Cohen (2002) and Milne-Thomson (1996)]. It is important to note that among the elevations, the interface depends

heavily on the density ratio s. The reason for this is that the amplitudes of waves in IM are very sensitive to the change

in density ratio s, whereas the waves in SM are least affected by the change in the value of s. Hence interface elevations

change sharply with the change in parameter s, whereas free surface elevations are comparatively less affected by the

change in the value of s. The variation in free surface elevations with the change in s is mainly due to the existence of the

secondary wave pattern, which is again caused by the internal waves. This is the reason why, in Fig. 5, the reflection and

transmission coefficients in IM are more dependent on s than those in SM. Interestingly, when s ¼ 0:25, the free surface
elevation is free from secondary waves, as in this case the internal waves have very small amplitude. Furthermore, it is

observed that with increase in the value of s the wavelength of interfacial waves reduces and very short waves are

observed as s approaches unity.

The local effects are not visible in the elevation plots because the magnitude of the contribution of local effects is

insignificant as compared to that of propagating modes in SM and IM in the present study. Moreover, their

contribution decays quickly as one moves away from the barrier (either left or right) because of the exponential decay of

the multiplication factor in the velocity potential. There is always a discontinuity in elevation as the waves pass the
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barrier. However, in the present case the magnitude of the discontinuity is very small because the porous membrane

offers very little resistance to waves. The discontinuity is only apparent in Fig. 8(a) for s ¼ 0:25.
4.3. Response of the membrane barrier

In the present subsection, the variation of membrane barrier response x normalized with respect to incident wave

amplitude II in SM is analysed for various membrane and two-layer fluid parameters. In all of Figs. 9–12, the vanishing

nature of membrane response at the two ends is because the membrane is fixed at those points.

Variation of normalized membrane response jx=II j for different h=H ratios is plotted versus normalized vertical

position y=H in Fig. 9. It is observed that the barrier has higher deflection amplitude at a location nearer to the

interface. This is due to the propagation of surface and interfacial waves at the interface in a two-layer fluid. However,

the deflection is found to be higher for small h=H ratio (the interface is closer to the free surface). This is because of the

higher free surface and interface elevation as observed in Fig. 7.

Variation of the normalized membrane response jx=II j is plotted versus normalized vertical position y=H for

different values of fluid density ratio s in Fig. 10. The membrane deflection is found to increase with the increase in fluid

density ratio s. The reasons for these observations are clear from the nature of free surface and interface elevations in

Fig. 8(a,b). However, nearer to the free surface, the membrane deflection in the upper fluid domain is found to be high

for low fluid density ratio s ¼ 0:25, as in this case the amplitude of free surface elevation is found to be quite high (see

Fig. 8(a)).

The normalized membrane response jx=II j for various values of membrane tension parameter T 0 is plotted versus

normalized vertical position y=H in Fig. 11. It is clear from Fig. 11 that the membrane deflection increases with decrease

in membrane tension. This is expected, because a reduction in membrane tension leads to a reduction in the stiffness of

the membrane against the wave motion and leads to a higher membrane deflection.

In Fig. 12 the normalized membrane response jx=II j is plotted versus normalized vertical position y=H for different

values of the porous-effect parameter G. A high membrane deflection is observed for higher values of the imaginary part

of the porous-effect parameter G (the inertia effect of the fluid inside the porous barrier).
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5. Concluding remarks

The performance of a wave barrier comprising of a vertical flexible porous membrane, tensioned and pinned both at

the free surface and the seabed, is investigated in a two-layer fluid of finite depth, with the upper fluid having a free

surface. The introduction of the new orthogonality relation (Eq. (17) has simplified the mathematical analysis for the

problem in the two-layer fluid. In the case of a two-layer fluid, the interfacial wave elevation is found to be much higher

than the wave propagating at the free surface in certain situations. Furthermore, it is observed that the wave reflection
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and transmission characteristics, free surface and interface elevations and barrier response are strongly dependent on

the fluid density ratio and the interface location, as well as on barrier parameters like membrane tension and porosity.

These observations are of considerable importance in the design of breakwaters either in locations where there exists a

layer of fresh water above the salt water or in estuaries where fluid stratification plays a crucial role. A similar approach

can be utilized to study more general problems in a two-layer fluid having a free surface.
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